= 0.76 and P = 560 Torr reported by Zurita et al. (2).

# Glossary

- B" second virial coefficient of pure component i, cm<sup>3</sup>/mol **B**<sub>12</sub> cross virial coefficient, cm3/mol coefficient in eq 1, J/mol  $G^{E}$ excess molar Gibbs energy, J/mol
- m number of measurements on a system
- n number of coefficients in eq 1
- n<sub>D</sub> refractive index for sodium D line
- $P_i^{\circ}$  $p_i'$ Rvapor pressure of pure component i, Torr
- defined by eq 5, Torr
- gas constant
- Т thermodynamic temperature, K
- $V_i^{\circ}$ molar volume of pure liquid i, cm<sup>3</sup>/mol
- mole fraction of component i in liquid Xi
- mole fraction of component i in vapor Y<sub>i</sub>
- activity coefficient of component i in liquid  $\gamma_i$
- estimated experimental uncertainty €
- density, g/cm<sup>3</sup> ρ
- standard deviation, defined in the footnote of Table  $\sigma$
- VI

Registry No. CH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>CH<sub>3</sub>, 110-54-3; CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>, 109-66-0; H2C=C(CH3)CO2Me, 80-62-6; MeCOPr, 107-87-9; H3CCO2H, 64-19-7; H<sub>3</sub>CCO<sub>2</sub>Et, 141-78-6; H<sub>3</sub>CCO<sub>2</sub>Me, 79-20-9; (CH<sub>3</sub>CO)<sub>2</sub>O, 108-24-7.

#### Literature Cited

Hull, D. M.; Lu, B. C.-Y. J. Chem. Eng. Data 1964, 29, 417.
 Zurita, J. L.; Postigo, M. A.; de Soria, M. L. G.; Katz, M. An. Asoc. Quim. Argent. 1987, 75, 203.

- (3) De Soria, M. L. G.; Zurita, J. L.; Postigo, M. A.; Katz, M. Thermochim. Acta 1988, 130, 249
- (4) Boublikova, L.; Lu, B. C.-Y. J. Appl. Chem. 1969, 19, 89.
- (5) Polak, J.; Lu, B. C.-Y. J. Chem. Thermodyn, 1972, 4, 469.
- (6) TRC-Thermodynamic Tables-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1988; 1973, p d-1011; 1974, p k-1010; 1977, p a-1010 (looseleaf data sheets).
- (7) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. In Organic Solvents, 4th ed.; Weissberger, A., Ed.; Techniques of Chemistry, Vol. II; John Wiley and Sons: New York, 1986.
- (8) Boublik, T.; Fried, V.; Hála, E. The Vapor Pressures of Pure Substances, 2nd revised ed.; Elsevier: Amsterdam, 1984; pp 242 and 341.
- TRC—Thermodynamic Tables—Non-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1988; 1960, p k-5430; 1965, pp a-5370 and k-5360; 1969, pp a-5550, d-5550, and k-5550; 1984, p d-5450 (loose-leaf data sheets). (9)
- (10) Barker, J. A. Aust, J. Chem. 1953, 6, 207.
- (11) Dymond, J. H.; Smith, E. B. The Virial Coefficients of Pure Gases and Mixtures; Oxford University Press: Oxford, 1980; pp 94, 111, 133, 135, and 166.
- (12) Matheson, M. S.; Aver, E. E.; Bevilacqua, E. B.; Hart, E. J. J. Am. Chem. Soc. 1949, 71, 497.
- (13) Meyer, E. F.; Wagner, R. E. J. Phys. Chem. 1966, 70, 3162.
- (14) Barton, J. R.; Hsu, C. C. J. Chem. Eng. Data 1969, 14, 184.
- (15) Wright, F. J. J. Chem. Eng. Data 1961, 6, 454.
- (16) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209.

Received for review October 9, 1989. Accepted February 26, 1990. Permission granted by the Process Research and Development Company (for-merly the Halcon SD Group Inc.) to publish this work is greatly appreciated. We are also indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support during the computer analysis of the results

# **Excess Enthalpy of Four Partially Miscible Binary Liquid Mixtures** near Their Critical Solution Temperatures

# John R. Battler<sup>†</sup>

Department of Chemical Engineering, Polytechnic University, Brooklyn, New York 11201

# **Richard L. Rowley\***

Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602

Heats of mixing for the n-hexane + methanol, 2-methylpropanoic acid + water, nitroethane + 2,2,4-trimethylpentane, and nitromethane + 1-butanol systems were measured as a function of composition at from six to eight temperatures bracketing each system's critical solution temperature. The estimated uncertainty in the results is less than 1.0%. Heats of mixing were endothermic in all four systems. Above the critical solution temperature, heat of mixing curves plotted vs mole fraction of the first component were everywhere convex. Below the critical solution temperature, intersections of the straight (two-phase) and curved (one-phase) heat of mixing lines were used to provide a calorimetric estimate of the binodal compositions.

### Introduction

The need for accurate prediction of liquid mixture properties for use in process design simulators has led to considerable interest in Gibbs free energy models. The local composition (LC) concept of Wilson (1) has been shown to be particularly effective in correlating vapor-liquid equilibrium (VLE). On the basis of the LC concept, several models have been developed to correlate VLE and liquid-liquid equilibrium (LLE) data (2-6), and simultaneously VLE and molar excess enthalpy  $h^{E}$  (5, 7-10) data.

In order to facilitate multiproperty correlation based on the Gibbs-Helmholtz relation, several investigators have incorporated additional empirical temperature dependencies into the original versions of LC models for the molar Gibbs free energy  $g^{E}$  (11-15). While some success has been reported (7-10), other investigators have found simultaneous correlation of VLE and  $h^{\epsilon}$  with these models to be applicable to only a few mixtures (5, 12-14). Studies have shown these empirically

Author to whom correspondence should be addressed.

<sup>&</sup>lt;sup>†</sup>Current address: Hoechst Celanese, P.O. Box 9077, Corpus Christi, TX 78469.

Table I. Experimental  $h^{E}$  (J/mol) for n-Hexane (1) + Methanol (2) Mixtures (CST = 306.95 K)<sup>a</sup>

|   |                       | $h^{\mathbf{p}}$ at various $T(\mathbf{K})$ |                 |        |        |                 |        |        |        |  |
|---|-----------------------|---------------------------------------------|-----------------|--------|--------|-----------------|--------|--------|--------|--|
|   | <i>x</i> <sub>1</sub> | 303.15                                      | 307.15          | 307.90 | 308.40 | 309.15          | 310.15 | 313.15 | 318.15 |  |
| _ | 0.0333                | 117                                         |                 |        |        |                 |        | 128    |        |  |
|   | 0.0720                | 252                                         | 264             | 248    | 244    | 246             | 244    | 264    | 314    |  |
|   | 0.0938                |                                             | 307             | 310    | 302    | 305             | 302    |        | 385    |  |
|   | 0.1174                | 369                                         | 362             | 365    | 357    | 361             | 357    | 381    | 453    |  |
|   | 0.1433                |                                             | 404             | 406    | 402    | 408             | 405    |        | 506    |  |
|   | 0.1715                | 460                                         | 438             | 443    | 432    | 444             | 443    | 482    | 459    |  |
|   | 0.2026                |                                             | 466             | 470    | 463    | 478             | 475    |        | 588    |  |
|   | 0.2369                | 491*                                        | 491             | 492    | 485    | 503             | 505    | 560    | 629    |  |
|   | 0.2751                |                                             | 515             | 519    | 514    | 52 <del>9</del> | 531    |        | 666    |  |
|   | 0.3178                | 500*                                        | 532             | 538    | 538    | 548             | 547    | 598    | 697    |  |
|   | 0.3658                |                                             | 551             | 555    | 552    | 565             | 569    |        | 716    |  |
|   | 0.4201                | 509*                                        | 564             | 571    | 568    | 576             | 581    | 627    | 736    |  |
|   | 0.4823                |                                             | 57 <del>9</del> | 582    | 580    | 584             | 593    |        | 758    |  |
|   | 0.5540                | 511*                                        | 587             | 593    | 585    | 596             | 605    | 653    | 768    |  |
|   | 0.6376                |                                             | 604             | 587    | 581    | 590             | 597    |        | 760    |  |
|   | 0.7365                | 485                                         | 552             | 563    | 555    | 563             | 589    | 609    | 664    |  |
|   | 0.7812                | 436                                         |                 |        |        |                 |        | 565    |        |  |
|   | 0.8295                | 385                                         |                 |        |        |                 |        | 515    |        |  |
|   | 0.8551                |                                             | 436             | 444    | 427    | 421             | 423    |        | 482    |  |
|   | 0.8817                | 295                                         |                 |        |        |                 |        | 422    |        |  |
|   | 0.9383                |                                             |                 |        |        |                 |        | 154    |        |  |
|   |                       |                                             |                 |        |        |                 |        |        |        |  |

"Values marked by asterisks are from a two-phase region.

modified models to be inadequate for general prediction of liquid-phase coexistence curves for both binary (16) and ternary (17, 18) systems.

While partially miscible ternary systems are of more practical importance to the chemical processing industry, the study of partially miscible binary systems provides information about the temperature dependence of LLE that is more significant to development of the correct temperature dependence in Gibbs free energy models. For example, an enthalpy-based local-composition model (EBLCM) (16-18) has been developed in an attempt to accurately predict LLE from only VLE and  $h^{E}$  data for binary and ternary systems. The existing literature, however, contains very few data for excess enthalpies of partially miscible binary systems (19). To help alleviate that paucity and to provide data from which better  $g^{E}$  models can be developed to simultaneously correlate  $h^{E}$  and LLE, we report here  $h^{E}$ values for four partially miscible binary systems at several temperatures just above and below their critical solution temperature (CST).

# **Experimental Section**

Excess enthalpies were measured with use of a commercial Tronac Model 450/550 isothermal flow calorimeter with a flow insert similar in design to that used by Christensen et al. (20). The calorimeter and experimental technique have been described elsewhere (17). Two ISCO precision positive displacement pumps were used to establish constant flow rates through the mixing cell. The pumps' stepper motors were driven at constant, but variable, flow rates by a microcomputer using a frequency-to-voltage converter. The pumps were calibrated over the range 0.0017-0.0217 cm<sup>3</sup>/s through replicate runs of distilled water. The calibrated flow rates were linear with a reliability of better than 99.8% over the entire flow range. Experiments were performed with one pure component in each pump. The mixture composition was varied over the entire composition range by adjusting the flow rates of the two pumps subject to the constraint of constant total flow rate at 0.016 67 cm<sup>3</sup>/s. In addition to thorough cleaning and purging of the pumps between changes in components, densities of the pure fluids were measured and compared to values available in the literature to ensure complete purging of the system and to maintain purity of components. A Mettler/Paar 4-digit densitometer with a calibrated accuracy of  $\pm 0.0001$  kg/dm<sup>3</sup> was used for the density determinations.

The calorimeter, submerged in a constant temperature bath, was maintained to within  $\pm 0.0006$  K of the set point with a Tronac Model PTC-41 precision temperature controller as monitored with a Hewlett-Packard Model 2804A quartz thermometer. Feed streams to the calorimeter's mixing/measurement coil were equilibrated to the bath temperature in stainless steel heat-exchange coils immersed in the same bath. A back-pressure regulator in the effluent line maintained a constant pressure of 101.3 kPa.

Excess enthalpies were determined from the calibrated flow rates, the fluid densities, the change of the control heater's pulse rate at each composition from the base-line value, and the electrical calibration constant for the pulse heat rate. Three replicate measurements were made over the entire composition range at each temperature for the four systems. The agreement between replicate runs was found to be better than 99.2%

All organic chemicals used in this study were spectrophotometric grade of at least 99.9% specified purity. All were used without further purification. Water used in this study was deionized and then distilled in a Sybron/Barnstead Fistreem glass still. A test of the accuracy of the calorimeter was made by comparing measured excess enthalpies for cyclohexane + benzene mixtures with values reported by Elliott and Wormald (*21*); the resultant average absolute deviation was 0.41%, and the maximum error was 0.75%. On the basis of this test and the precision of the measurements, we estimate the uncertainty of the reported excess enthalpies to be less than 1.0%.

### Results

Experimental heats of mixing for *n*-hexane + methanol, 2-methylpropanoic acid + water, nitroethane + 2,2,4-trimethylpentane, and nitromethane + 1-butanol mixtures are reported in Tables I-IV. The critical solution temperatures of these systems, as reported elsewhere (6), are also shown in these tables for reference purposes. Values of the heat of mixing reported for the *n*-hexane + methanol system agree with previously reported data (22, 23) to within experimental error. Literature data for the nitroethane + 2,2,4-trimethylpentane system, only available at 298.15 K (24), are slightly larger than those measured in this study. The authors know of no literature values for the remaining two systems.

| Table II. | Experimental h <sup>E</sup> | (J/mol) for | 2-Methylpropanoic Acid | (1) + | Water (2) Mixtures | $(CST = 298.65 \text{ K})^a$ |
|-----------|-----------------------------|-------------|------------------------|-------|--------------------|------------------------------|
|-----------|-----------------------------|-------------|------------------------|-------|--------------------|------------------------------|

|                    |                    | $h^{2}$ at various $T(\mathbf{K})$ |                |        |                |             |        |        |  |  |
|--------------------|--------------------|------------------------------------|----------------|--------|----------------|-------------|--------|--------|--|--|
| $\boldsymbol{x}_1$ | $\boldsymbol{x}_1$ | 293.15                             | <b>298</b> .15 | 298.65 | <b>299.</b> 15 | 300.15      | 303.15 | 308.15 |  |  |
|                    | 0.0461             |                                    |                |        |                |             | 92     | 147    |  |  |
|                    | 0.0765             |                                    |                |        |                |             | 200    | 237    |  |  |
|                    | 0.0882             | 180*                               | 200*           | 201    | 207            |             |        |        |  |  |
|                    | 0.1007             |                                    |                |        |                | 228         |        |        |  |  |
|                    | 0.1142             | 2 <b>43</b> *                      | 268*           | 270    | 276            | 264         | 293    | 347    |  |  |
|                    | 0.1288             |                                    |                |        |                | 299         |        |        |  |  |
|                    | 0.1447             | 307*                               | 335            | 339    | 343            | 333         |        |        |  |  |
|                    | 0.1620             |                                    |                |        |                | 377         | 416    | 490    |  |  |
|                    | 0.1810             | 381*                               | 404            | 410    | 411            | 413         |        |        |  |  |
|                    | 0.2018             |                                    |                |        |                | 454         |        |        |  |  |
|                    | 0.2248             | 447                                | 487            | 488    | 489            | 496         | 561    | 617    |  |  |
|                    | 0.2504             |                                    |                |        |                | 53 <b>6</b> |        |        |  |  |
|                    | 0.2789             | 523                                | 570            | 575    | 621            | 581         |        |        |  |  |
|                    | 0.3109             |                                    |                |        |                | 633         | 733    | 783    |  |  |
|                    | 0.3471             | 606                                | 654            | 664    | 717            | 682         |        |        |  |  |
|                    | 0.3885             |                                    |                |        |                | 733         |        |        |  |  |
|                    | 0.4361             | 671                                | 766            | 774    | 805            | 785         | 916    | 1006   |  |  |
|                    | 0.4916             |                                    |                |        |                | 836         |        |        |  |  |
|                    | 0.5569             | 758                                | 861            | 862    | 867            | 896         | 1024   | 1120   |  |  |
|                    | 0.6351             |                                    |                |        |                | 941         | 1073   | 1160   |  |  |
|                    | 0.7302             | 816                                | 891            | 897    | 914            | 957         | 1094   | 1168   |  |  |
|                    | 0.7744             | 824                                | 883            | 884    | 896            |             |        |        |  |  |
|                    | 0.8227             | 741                                | 807            | 809    | 853            |             |        |        |  |  |
|                    | 0.8486             |                                    |                |        |                | 783         | 929    | 900    |  |  |
|                    | 0.8759             | 599                                | 667            | 671    | 690            |             |        |        |  |  |
|                    | 0.9347             | 379                                | 415            | 406    | 445            |             |        |        |  |  |

<sup>a</sup> Values marked by asterisks are from a two-phase region.



**Figure 1.** Experimental  $h^{E}$  for *n*-hexane (1) + methanol (2) mixtures at 303.15 (O), 209.15 ( $\blacksquare$ ), and 318.15 K ( $\blacktriangle$ ). Dashed lines represent single-phase values correlated by using EBLCM; solid lines represent the two-phase isotherm estimated from the calorimetric data.

Measured excess enthalpies in the single-phase region were correlated by using the EBLCM equation of Rowley and Battler (16)

$$h^{E} = x_{1}x_{2} \left[ \sum_{j=1}^{2} \sum_{j=1}^{2} \frac{H_{ij}G_{ij}}{\sum_{k=1}^{2} x_{k}G_{kj}} + b\left[(T/K) - 300\right] \right]$$
(1)

where

$$G_{ij} = \exp\left(-\frac{a_{ij}}{RT}\right) \tag{2}$$

and  $H_{ij} = 0$  for i = j. This equation provides good correlation of experimental  $h^{E}$  data over a wide temperature range using a relatively small number of parameters. The values of the parameters  $H_{ij}$ ,  $a_{ij}$ , and b in eqs 1 and 2 are presented in Table V for each system, along with the overall standard deviation of the fit. Figures 1–4 show both experimental and correlated  $h^{E}$ values for selected temperatures.



**Figure 2.** Experimental  $h^{\rm E}$  for 2-methylpropanoic acid (1) + water (2) mixtures at 293.15 ( $\bigcirc$ ), 300.15 ( $\bigcirc$ ), and 308.15 K ( $\triangle$ ). Line attributes are the same as in Figure 1.



Figure 3. Experimental  $h^{\text{E}}$  for nitroethane (1) + 2,2,4-trimethylpentane (2) mixtures at 293.15 ( $\textcircled{\bullet}$ ), 304.15 ( $\textcircled{\bullet}$ ), and 313.15 K ( $\blacktriangle$ ). Line attributes are the same as in Figure 1.

Below the CST,  $h^{E}$  vs  $x_{1}$  plots exhibit a linear behavior characteristic of the two-phase region and a discontinuity in slope at the binodal curve. This has been observed previously for similar systems (25). The linear dependence of excess enthalpy on composition in the two-phase region results from

Table III. Experimental  $h^{E}$  (J/mol) for Nitroethane (1) + 2,2,4-Trimethylpentane (2) Mixtures (CST = 302.15 K)<sup>a</sup>

| $h^{E}$ at various $T(\mathbf{K})$ |                                                                                                     |                                                        |                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 293.15                             | 302.15                                                                                              | 303.15                                                 | 304.15                                                   | 305.15                                                 | 308.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 313.15                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 275                                | 393                                                                                                 | 412                                                    | 442                                                      | 481                                                    | 467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 513                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 648                                | 738                                                                                                 | 755                                                    | 780                                                      | 813                                                    | 855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 872                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 895                                | 1000                                                                                                | 1009                                                   | 1031                                                     | 1065                                                   | 1108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1146                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1102                               | 1177                                                                                                | 1220                                                   | 1225                                                     | 1272                                                   | 1302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1332                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1209                               | 1318                                                                                                | 1337                                                   | 1357                                                     | 1385                                                   | 1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1461                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1177*                              | 1490                                                                                                | 1571                                                   | 1636                                                     | 1666                                                   | 1791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1888                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1127*                              | 1449                                                                                                | 1525                                                   | 1605                                                     | 1663                                                   | 1779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1873                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1078*                              | 1387                                                                                                | 1454                                                   | 1491                                                     | 1601                                                   | 1710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1795                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1017*                              | 1284                                                                                                | 1367                                                   | 1423                                                     | 1467                                                   | 1578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1663                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1005*                              | 1172                                                                                                | 1228                                                   | 1292                                                     | 1319                                                   | 1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1454                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 941                                | 1027                                                                                                | 1073                                                   | 1087                                                     | 1098                                                   | 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1173                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 749                                | 763                                                                                                 | 765                                                    | 771                                                      | 782                                                    | 796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 809                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 372                                | 381                                                                                                 | 387                                                    | <b>39</b> 3                                              | 399                                                    | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 424                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                    | 293.15<br>275<br>648<br>895<br>1102<br>1209<br>1177*<br>1027*<br>107*<br>1005*<br>941<br>749<br>372 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | h <sup>2</sup> at various T (K)           293.15         302.15         303.15         304.15         305.15           275         393         412         442         481           648         738         755         780         813           895         1000         1009         1031         1065           1102         1177         1220         1225         1272           1209         1318         1337         1357         1385           1177*         1490         1571         1636         1666           1127*         1449         1525         1605         1663           1078*         1387         1454         1491         1601           1017*         1284         1367         1423         1467           1005*         1172         1228         1292         1319           941         1027         1073         1087         1098           749         763         765         771         782           372         381         387         393         399 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | h <sup>k</sup> at various T (K)293.15302.15303.15304.15305.15308.15313.15275393412442481467513648738755780813855872895100010091031106511081146110211771220122512721302133212091318133713571385141014611177*1490157116361666179118881127*1449152516051663177918731078*1387145414911601171017951017*1284136714231467157816631005*117212281292131914101454941102710731087109811451173749763765771782796809372381387393399414424 |  |

<sup>a</sup> Values marked by asterisks are from a two-phase region.

Table IV. Experimental  $h^{E}$  (J/mol) for Nitromethane (1) + 1-Butanol (2) Mixtures (CST = 291.15 K)<sup>a</sup>

|                       | $n^2$ at various $T(\mathbf{K})$ |        |        |        |        |        |   |  |  |
|-----------------------|----------------------------------|--------|--------|--------|--------|--------|---|--|--|
| <i>x</i> <sub>1</sub> | 291.15                           | 292.15 | 293.15 | 295.15 | 298.15 | 303.15 |   |  |  |
| 0.0817                | 572                              | 568    | 582    | 574    | 581    | 605    | - |  |  |
| 0.1582                | 1143                             | 1133   | 1140   | 1147   | 1156   | 1164   |   |  |  |
| 0.2298                | 1490                             | 1531   | 1527   | 1563   | 1595   | 1620   |   |  |  |
| 0.2972                | 1692                             | 1707   | 1741   | 1814   | 1894   | 1912   |   |  |  |
| 0.3605                | 1794                             | 1842   | 1872   | 1932   | 2061   | 2106   |   |  |  |
| 0.4202                | 1865                             | 1925   | 1928   | 2018   | 2151   | 2242   |   |  |  |
| 0.4766                | 1912                             | 1972   | 1996   | 2087   | 2203   | 2293   |   |  |  |
| 0.5300                | 1961                             | 1990   | 2049   | 2144   | 2222   | 2312   |   |  |  |
| 0.5805                | 1938*                            | 2009   | 2023   | 2098   | 2252   | 2320   |   |  |  |
| 0.6284                | 1920*                            | 1975   | 1994   | 2084   | 2200   | 2271   |   |  |  |
| 0.6740                | 1886*                            | 1931   | 1966   | 2044   | 2149   | 2221   |   |  |  |
| 0.7173                | 1858                             | 1890   | 1909   | 1986   | 2088   | 2122   |   |  |  |
| 0.7585                | 1781                             | 1797   | 1819   | 1888   | 1968   | 2002   |   |  |  |
| 0.7978                | 1686                             | 1723   | 1741   | 1770   | 1837   | 1881   |   |  |  |
| 0.8354                | 1560                             | 1572   | 1588   | 1605   | 1653   | 1725   |   |  |  |
| 0.8712                | 1386                             | 1388   | 1381   | 1385   | 1406   | 1492   |   |  |  |
| 0.9055                | 1114                             | 1116   | 1113   | 1107   | 1124   | 1214   |   |  |  |
| 0.9384                | 791                              | 796    | 795    | 786    | 800    | 873    |   |  |  |

<sup>a</sup> Values marked by asterisks are from a two-phase region.

constant partial molar enthalpies in the two coexisting phases. The slope discontinuity can be utilized as an enthalpic measurement of the binodal curve. The lowest isotherms displayed in Figures 1-4 were used to estimate the coexisting phase compositions; values are reported and compared with smoothed experimental values (6) in Table VI. Values of  $h^{E}$  obtained in the two-phase region between these compositions are marked with an asterisk in Tables I-IV. Binodal composition estimates can be made graphically or by determining the intersection of a polynomial fitted only from single-phase data with the straight line that characterizes the two-phase region. Equilibrium phase compositions estimated in this manner for the n-hexane + methanol and nitroethane + 2,2,4-trimethylpentane systems are reasonable as is the value obtained for one of the coexisting phases in the 2-methylpropanoic acid + water system. Estimation of the composition for the second phase of this latter system was impossible because of its proximity to that



| parameters              | n-hexane (1) +<br>methanol (2) | 2-methylpropanoic acid (1) +<br>water (2) | nitroethane (1) +<br>2,2,4-trimethylpentane (2) | nitromethane (1) +<br>1-butanol (2) |
|-------------------------|--------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------|
| a <sub>21</sub> , J/mol | 6208.6                         | 2946.4                                    | 4031.5                                          | 1695.79                             |
| $a_{12}$ , J/mol        | 5083.9                         | 3925.0                                    | 5123.3                                          | 4712.20                             |
| $H_{21}$ , J/mol        | 4907.8                         | 892.8                                     | 11 025.1                                        | 7411.46                             |
| $H_{12}$ , J/mol        | 4489.1                         | 9098.5                                    | 9752.4                                          | 15225.04                            |
| $b, J/(mol \cdot K)$    | 57.88                          | 79.01                                     | 109.63                                          | 77.09                               |
| AAD,º %                 | 3.8                            | 4.1                                       | 5.1                                             | 2.8                                 |
| AAD, <sup>a</sup> J/mol | 14                             | 20                                        | 42                                              | 35                                  |



**Figure 4**. Experimental  $h^{E}$  for nitromethane (1) + 1-butanol (2) mixtures at 291.15 ( $\bullet$ ), 295.15 ( $\blacksquare$ ), and 303.15 K ( $\blacktriangle$ ). Line attributes are the same as in Figure 1.

of pure water. A similar analysis for the nitromethane + 1butanol system indicates some phase separation at the reported CST, possibly due to either slight impurities in the mixture or a slight error in the reported CST. In general, the calorimetric method for determination of LLE is most accurate for temperatures several degrees below an upper CST, where there is a distinct change in slope at the binodal compositions.

# Conclusions

Heats of mixing for the *n*-hexane + methanol, 2-methylpropanoic acid + water, nitroethane + 2,2,4-trimethylpentane, and nitromethane + 1-butanol systems were measured at from six to eight temperatures bracketing each system's CST. An analysis of the experimental data below the critical solution temperature shows the characteristic linear relationship for  $h^{\rm E}$ vs composition in the two-phase region. Intersection of this linear region with the single-phase curve provides reasonable estimates of the binodal compositions for the four systems reported here. This calorimetric determination of LLE becomes less accurate and more difficult to use the closer the temperature is to the CST.

<sup>a</sup> Average absolute deviation.

Table VI. Binodal Compositions Estimated from the  $h^E$ Data

|                                                      |              | estin | nated | liter | ature |
|------------------------------------------------------|--------------|-------|-------|-------|-------|
| system                                               | <i>Т</i> , К | x1'   | x1"   | x1'   | x1"   |
| $\overline{n-\text{hexane}(1) + \text{methanol}(2)}$ | 303.15       | 0.21  | 0.74  | 0.269 | 0.758 |
| 2-methylpropanoic acid (1) + water (2)               | 293.15       |       | 0.20  | 0.054 | 0.224 |
| nitroethane (1) +<br>2,2,4-trimethylpentane (2)      | 293.15       | 0.20  | 0.83  | 0.236 | 0.834 |
| nitromethane (1) +<br>1-butanol (2)                  | 291.15       | 0.53  | 0.72  | at (  | CST   |

# Glossary

- hE molar excess enthalpy (J/mol)
- $g^{\mathsf{E}}$ molar excess Gibbs free energy (J/mol)
- R molar gas constant [J/(mol·K)]
- Т temperature (K)
- $X_{i}$ mole fraction of component i
- a<sub>ij</sub> adjustable parameter for i-j interactions (J/mol)
- Ĥ<sub>ii</sub> adjustable parameter for i-/ interactions (J/mol)
- Ğ nonrandomness weighting factor, defined by eq 2

b adjustable parameter for i-j interactions  $[J/(mol \cdot K)]$ 

Registry No. Hexane, 110-54-3; methanol, 67-56-1; 2-methylpropanoic acid, 79-31-2; nitroethane, 79-24-3; 2,2,4-trimethylpentane, 540-84-1; nitromethane, 75-52-5; 1-butanol, 71-36-3.

## **Literature Cited**

- Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.
   Prausnitz, J. M.; Anderson, T. F.; Grens, E. A., II; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria ; Prentice Hall: Engleood Cliffs, NJ, 1980.
- (3) Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
   (4) Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135.

- (5) Nicolaides, G. L.; Eckert, C. A. Ind. Eng. Chem. Fundam. 1978, 17, 331.
- Sorensen, J. M.; Arit, W. Liquid-Liquid Equilibrium Data Collection; Dechema: Frankfurt. 1979: Vol. 5, Part 1. (6)
- (7) Hanks, R. W.; Gupta, A. C.; Christensen, J. J. Ind. Eng. Chem. Fundam. 1971, 10, 504.
- (8) Hanks, R. W.; Tan, R. L.; Christensen, J. J. Thermochim. Acta 1978, 27.9. (9) Tan, R. L.; Hanks, R. W.; Christensen, J. J. Thermochim. Acta 1978,
- 27. 29. (10) Pando, C.; Renuncio, J. A. R.; Tan, R. L.; Christensen, J. J. Thermo-
- chim. Acta 1983, 62, 113. (11) Fredenslund, Aa.; Jones, R. L.; Prausnitz, J. M. AIChE J. 1975, 21,
- 1086. (12) Skjold-Jorgensen, S.; Rasumussen, P.; Fredenslund, Aa. Chem. Eng.
- Sci. 1980, 35, 2389.
- (13) Hanks, R. W.; Tan, R. L.; Christensen, J. J. Thermochim. Acta 1978, 27.41.
- Malanowski, S.; Skjold-Jorgensen, S.; Rasmussen, P.; Fredenslund, Aa. Chem. Eng. Sci. 1981, 36, 1727.
   Larsen, B. L.; Rasmussen, P.; Fredenslund, Aa. Ind. Eng. Res. 1987,
- 26. 2274.
- (16) Rowley, R. L.; Battler, J. R. *Fluid Phase Equilib.* 1980, 18, 111.
   (17) Battler, J. R.; Clark, W. M.; Rowley, R. L. J. Chem. Eng. Data 1985, 30. 254.
- (18) Battler, J. R.; Rowley, R. L. *Fluid Phase Equilib*. 1986, 25, 129.
  (19) Christensen, J. J.; Hanks, R. W.; Izatt, R. M. *Handbook of Heats of Mixing*; Wiley: New York, 1982. Christensen, J. J.; Rowley, R. L.; Izatt, R. M. Handbook of Heats of Mixing: Supplementary Volume; Wiley: New York, 1988.
- (20) Christensen, J. J.; Hansen, L. D.; Eatough, D. J.; Izatt, R. M. *Rev. Sci. Instrum.* **1976**, *47*, 730.
   (21) Elliott, K.; Wormald, C. J. *J. Chem. Thermodyn.* **1976**, *8*, 881.
   (22) Savini, C. G.; Winterhalter, D. R.; Van Ness, H. C. J. Chem. Eng.
- Data 1965, 10, 168.
- (23) Brown, I.; Fock, W.; Smith, F. Aust. J. Chem. 1964, 17, 1106.
   (24) Hsu, K.-Y.; Clever, H. L. J. Chem. Eng. Data 1975, 20, 268.
- Villamanan, M. A.; Allawi, A. J.; Van Ness, H. C. J. Chem. Eng. Data (25)1984, 29, 431.

Received for review April 16, 1990. Accepted April 30, 1990. This work was performed at the Department of Chemical Engineering of Rice University in Houston, TX, and funded by the National Science Foundation under Contract No. CPE-8022908.

# **Excess Volumes of Binary Mixtures of 1,3-Dichiorobenzene with** 1-Alkanois at 303.15 K

# Tirumala S. Vijayalakshmi and Puligundla R. Naidu\*

Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India

# Excess molar volumes for binary mixtures of

1,3-dichlorobenzene with 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol have been determined at 303.15 K. V<sup>E</sup> is negative in mixtures rich in alcohols and positive in mixtures rich in 1,3-dichlorobenzene.

#### Introduction

This forms a part of a study of excess thermodynamic properties of binary mixtures that include chlorinated benzenes as common components and a homologous series of alcohols as noncommon components. Excess volumes for mixtures of 1,2-dichlorobenzene with 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol were reported earlier (1). We report here new experimental data for binary mixtures of 1,3-dichlorobenzene with the five alcohols. This work was under-

#### Table I. Densities $\rho$ of Pure Liquid Components at 303.15 K

|                    | $\rho/(\mathrm{g \ cm^{-3}})$ |              |  |  |
|--------------------|-------------------------------|--------------|--|--|
| component          | present work                  | literature   |  |  |
| 1,3-dichlorobenene | 1.277 16                      | 1.277 18 (5) |  |  |
| 1-but <b>a</b> nol | 0.802 06                      | 0.8022(6)    |  |  |
| 1-pentanol         | 0.80760                       | 0.8079 (6)   |  |  |
| 1-hexanol          | 0.81205                       | 0.8121(6)    |  |  |
| 1-heptanol         | 0.81572                       | 0.8148 (6)   |  |  |
| 1-octanol          | 0.821 88                      | 0.8184 (6)   |  |  |

taken to study the isomeric effect arising due to the replacement of 1,2-dichlorobenzene by 1,3-dichlorobenzene.

#### Experimental Section

Excess volumes were measured as described previously (1) by using a single composition per loading type dilatometer described by Rao and Naidu (2). Measurements were made employing a thermostatic bath maintained to 303.15  $\pm$  0.01 K.